Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            An ever-expanding photovoltaics (PV) community has been publishing enormous amounts of data regarding all aspects of PV technology. The data generated via these studies and reports range from experiments, simulation, and standard tests to policies and economics of PV. These data require organization, systematic storage, and analyses. Previous works have focused on research-specific data environments and repositories. However, a comprehensive discipline-neutral platform for preserving, sharing, and analyzing the data has not been built. Digital Environment for Enabling Data-Driven Science (DEEDS) provides a unique solution to this problem. DEEDS enables a user to create datasets (projects), cases, and tools; and store data which can be structured, compared, and numerically analyzed, all on a single holistic online platform. In this paper, we demonstrate the capabilities of DEEDS using an example research study called the Solar PV Diagnosis. DEEDS platform has the potential to be used by the entire PV community to preserve various PV projects, interpret their performance and reliability, and to facilitate worldwide collaboration.more » « less
- 
            The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A<sc>bstract</sc> An angular analysis ofB0→ K*0e+e−decays is presented using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The analysis is performed in the region of the dilepton invariant mass squared of 1.1–6.0 GeV2/c4. In addition, a test of lepton flavour universality is performed by comparing the obtained angular observables with those measured inB0→ K*0μ+μ−decays. In general, the angular observables are found to be consistent with the Standard Model expectations as well as with global analyses of otherb → sℓ+ℓ−processes, whereℓis either a muon or an electron. No sign of lepton-flavour-violating effects is observed.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract This paper presents the first measurement of$$\psi {(2S)}$$ and$$\chi _{c1}(3872)$$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ )$$\pi ^+\pi ^-$$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ and$$p_{\textrm{T}} (\text {tag})$$ bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A search for violation in and decays is presented using the full Run 1 and Run 2 data samples of collisions collected with the LHCb detector, corresponding to an integrated luminosity of at center-of-mass energies of 7, 8, and 13 TeV. For the Run 2 data sample, the -violating asymmetries are measured to be and , where the first uncertainty is statistical and the second is systematic. Following significant improvements in the evaluation of systematic uncertainties compared to the previous LHCb measurement, the Run 1 dataset is reanalyzed to update the corresponding results. When combining the Run 2 and updated Run 1 measurements, the final results are found to be and , constituting the most precise measurements of these asymmetries to date. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A<sc>bstract</sc> TheΥ(2S) andΥ(3S) production cross-sections are measured relative to that of theΥ(1S) meson, as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses data collected by the LHCb experiment in 2018 corresponding to an integrated luminosity of 2 fb−1. Both theΥ(2S)-to-Υ(1S) andΥ(3S)-to-Υ(1S) cross-section ratios are found to decrease significantly as a function of event multiplicity, with theΥ(3S)-to-Υ(1S) ratio showing a steeper decline towards high multiplicity. This hierarchy is qualitatively consistent with the comover model predictions, indicating that final-state interactions play an important role in bottomonia production in high-multiplicity events.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A study is presented of and decays based on the analysis of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of . The invariant-mass distributions of both decay modes show, in the mass region, large activity which is resolved using an amplitude analysis. A simple model, where amplitudes are described by multiple Breit-Wigner functions with appropriate angular distributions, provides a good description of the experimental data. In this approach a complex mixture of , and amplitudes is observed that is dominated by , , , , and resonances. The Dalitz plots are dominated by asymmetric crossing bands which are different for the two decay modes. This is due to a different interference pattern between the and amplitudes in the two channels. Branching fractions are measured for each resonant contribution. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available